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Abstract 

Background: Individuals with autism spectrum disorder (ASD) exhibit frequent behavioral deficits 

in facial emotion recognition (FER). It remains unknown whether these deficits arise because 

facial emotion information is not encoded in their neural signal, or because it is encoded, but fails 

to translate to FER behavior (deployment). This distinction has functional implications, including 

constraining when differences in social information processing occur in ASD, and guiding 

interventions (i.e., developing prosthetic FER-vs.-reinforcing existing skills). Methods: We utilized 

a discriminative and contemporary machine learning approach - Deep Convolutional Neural 

Networks (CNN) – to classify facial emotions viewed by individuals with and without ASD(N= 88) 

from concurrently-recorded electroencephalography signals. Results: The CNN classified facial 

emotions with high accuracy for both ASD and non-ASD groups, even though individuals with 

ASD performed more poorly on the concurrent FER task.  In fact, CNN accuracy was greater in 

the ASD group, and was not related to behavioral performance. This pattern of results replicated 

across three independent participant samples. Moreover, feature-importance analyses suggest 

that a late temporal window of neural activity (1000–1500ms) may be uniquely important in facial 

emotion classification for individuals for ASD. Conclusions: Our results reveal for the first time 

that facial emotion information is encoded in the neural signal of individuals with (and without) 

ASD. Thus, observed difficulties in behavioral FER associated with ASD likely arise from 

difficulties in decoding or deployment of facial emotion information within the neural signal. 

Interventions should focus on capitalizing on this intact encoding rather than promoting 

compensation or FER prosthetics. 
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Introduction 

 

Deficits in facial emotion recognition (FER) are a core feature of the social-emotional information 

processing characteristic of autism spectrum disorder (ASD) (1). Variation in the ability to 

accurately identify and label the emotional valence of facial stimuli is associated with ASD 

symptom severity as well as measures of adaptive functioning (2).  Meta-analyses support the 

conclusion that individuals with ASD perform poorer than controls on tasks of facial emotion 

identification and recognition across all basic emotions (3–5). Additionally, eye tracking, 

electrophysiological, and neuroimaging findings implicate atypical attentional and cognitive 

processing of facial emotions by individuals with ASD (6–8). These findings suggest that emotion-

related information is either absent or insufficiently present, on a trial-by-trial basis, in the neural 

processing of individuals with ASD. However, it is instead possible that deficits reflect a failure to 

use emotion-related information to accurately guide behavior. This study aims to examine if facial 

emotion encoding occurred on a trial-by-trial basis for a particular individual, to understand the 

nature of observed facial emotion recognition deficits seen in some individuals with ASD.  

 

Recent developments in machine learning techniques may provide a novel approach for 

addressing this question.  One particularly promising technique is Deep Learning, more 

specifically a Deep Convolutional Neural Network (CNN) classifier. The CNN is a set of 

multifunctional layers that can be applied to discriminate multidimensional data (like most 

multilayer generative approaches). CNN can construct intermediate representations that are of 

specific use for a given classification problem (9). CNN can construct intermediate abstractions of 

neural data (or feature subspaces) that are of specific use for a given classification problem (10). 

Typically, CNN have been successfully applied to neuroimaging, and electroencephalography 

(EEG) data to identify patient population-level neural representations of psychological constructs 

in the brain, or biomarkers for disease (11,12). However, this is not always the case, with 

accuracy of representation varying considerably (13,14), and little work has applied these efforts 

to within-individual (rather than between-group) analyses (15,16). Thus, an important first step in 
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determining if neural representations of facial emotions are preserved in ASD is to assess 

whether this facial emotion information is even present within the neural signal of individuals with 

ASD, and whether that information can be successfully used to identify the facial emotion they 

are viewing at each trial. We can test if facial emotion information exists within the neural signal 

for an individual by inputting the CNN with EEG data on an intra-individual basis to predict 

emotion labeled by that individual. This can be applied in both control individuals as well as 

clinical populations (17,18).   

 

In the current study, we used CNN to reanalyze EEG data collected as participants, both ASD 

and control, viewed images of facial emotions.  Specifically, the CNN were trained using an 

individual’s own neural data recorded during a FER task in order to predict which facial emotion 

was presented on each trial.  Our analyses allow us to first determine (a) whether the neural 

activity (as represented in relatively sparse-array EEG channels) of individuals with and without 

ASD can be used to classify emotions, which tests if facial emotion information is present and 

extractable within the neural signal. Second, they allow us to determine (b) whether the relation 

between CNN predictions and behavioral performance is comparable between individuals with 

ASD and controls. This tests for suboptimal (but present) encoding compared to controls (CNN: 

ASD<Controls) or suboptimal deployment (ASD: CNN>Behavior) of encoded facial emotion in 

ASD. Lastly, these tests permit us to determine (c) whether differences in      CNN performance 

(CNN accuracy) are related to differences in behavioral performance on the FER task for 

individuals with ASD and controls. If the classification performance of the CNN is not strongly 

related to behavior, it would suggest partially distinct neural processes for encoding and 

deployment of facial emotion information. In order to examine the robustness of findings, we 

conducted these analyses on data from three distinct study samples. 

 

Though CNN have proven themselves to be useful in tackling difficult classification problems (19), 

interpretation of their behavior can be challenging.  CNN, like many recent neural network 

models, are considered “black box” models, providing little insight into how, where, when and 
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why they perform the way they do. For this reason, we employ saliency methods that allow us to 

interrogate our trained CNN, shedding light on what portions of the input-set are most relevant to 

the CNN’s performance and indicating what aspects of the EEG data may be relevant for 

classification (18); thus, allowing us to clarify the neural mechanisms underlying facial emotion 

processing.  For example, there may be particular temporal (e.g., early or late) or spatial (e.g., 

frontal or lateral) components of the EEG signal that are particularly important when attempting to 

classify the facial emotional expressions.  Moreover, associated group differences may shed light 

as to what stages of FER processing may be distinct or impaired in ASD.  

 

Methods and Materials 

 

Participants. The sample was comprised of 40 verbally-able adolescents with ASD and 48 

adolescents without ASD ranging in age from 14 to 17 years1∗. This age range was used as most 

impairments (neural and behavioral) seen in facial emotion recognition in ASD are relatively fixed 

by adolescence and are related to functional outcomes (2,5,7,20,21). ASD diagnoses were 

confirmed using the Autism Diagnostic Observation Schedule- 2 (ADOS-2; (22)) administered by 

research reliable study personnel. ADOS-2 comparison scores (CS) were then calculated as an 

index of core ASD symptom severity. Additionally, all study participants were determined to have 

a full-scale intelligence quotient (FSIQ) above 70 as measured by the Kaufman Brief Intelligence 

Test – Second Edition (KBIT-2; (23); see Table 1 for a summary of participant demographics).  

Replication sample participant information can be found in the Supplemental Material. 

 

Facial Emotion Recognition Task (FER) and EEG Acquisition. Participants completed a 

standardized measure of facial emotion recognition that has been well validated in both typically 

developing and ASD populations, the Diagnostic Analysis of Nonverbal Behavior (DANVA-2; 

                                                           
1∗  The full sample demonstrated group differences in age and gender, such that the ASD group 

was younger and contained more male participants. Therefore, a propensity matching procedure 
(52) was used to optimize the sample matching on these variables (p’s>.183). Result replicated 
full sample analyses; thus, the entire sample was included in the manuscript. 
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(24,25)), while undergoing simultaneous EEG data collection. The facial expression subtests of 

the DANVA-2 include 48 color photographs of male (N=24) and female (N=24) faces that display 

depictions of four basic emotions (12 happy, 12 sad, 12 angry, and 12 fearful). During the FER 

task, participants were asked to view each face and make a behavioral determination of the 

emotion displayed via button press. Each face was presented on a computer screen for a 

minimum of 2000ms and a maximum of 4000ms, depending upon individual participant response 

time. If participants did not make a behavioral response within the maximum 4000ms time 

window, the face disappeared from the screen, but the response options remained requiring the 

selection of a response to advance to the next trial. Groups did not differ on reaction times 

(p=.182; Table 1), and no individual mean reactions times fell within the time window of EEG data 

used by the CNN (Range of subject mean reaction times = [2035.70-6881.17ms]; M =3933.76ms; 

SD =914.97ms). However, groups differed on FER accuracy (F(1,86)=4.369, p=0.040), such that 

the control group had more accurate performance ( Table 1.0). 

 

Electrophysiological responses to each stimulus presentation were recorded using Brain Products 

32-channel BrainVision actiCHamp EEG recording system arranged in the international standard 

10/20 system. Eye movements and eye blinks were recorded using four facial electrodes: 2 

placed on the canthi of each eye to measure horizontal movements, and 2 placed at supra- and 

infra-orbital sites to measure vertical movements. The EEG signal was pre-amplified at the 

electrode to improve the signal-to-noise ratio by the BrainAmp system. The data were digitized at 

a 16-bit resolution with a sampling rate of 500 Hz using a band-pass filter of 0.016-1000 Hz, and 

notch filtered at 60Hz with a half-power cutoff of 12db/Oct. Each active electrode was measured 

online with respect to a common mode sense active electrode producing a monopolar (non-

differential) channel. Data collection procedures adhered to best practices for EEG data collection 

in ASD (26).  This EEG signal adequacy process has been executed before the automatic artifact 

and bad channels rejection methods explained below. 
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EEG Processing and Analyses. Our EEG analysis pipeline methodologies are divided in 1) 

EEG segmentation, 2) artifact removal, and 3) whitening normalization, 4) The CNN classifier 

architecture, and the detailed description of our training method, and 5) the feature importance 

analyses are outlined in Figure 4. 

1) EEG data were processed using EEGlab (27) Matlab toolbox. First, data was 

segmented to between -200 and 1500ms relative to the emotional face onset for single-trial 

analyses (Figure 4A). Then, each single-trial EEG response was filtered using a 150 coefficient 

Blackman-Harris-Window non-linear phase band-pass filter 0.1-30 Hz and re-referenced to T9 -

T10.  

2) Automatic channel rejection/removal (Figure 4B) was conducted using the Prep 

pipeline (28), Koethe’s cleanraw function, and the Artifact Subspace Removal (ASR) method to 

remove noise and artifactual channels. Next, the ADJUST EEGlab plugin (29) was used to 

remove additional spatio-temporal artifacts such as, temporal kurtosis, spatial average difference, 

maximum epoch variance, or generic discontinuities spatial feature a horizontal or vertical eye 

blink artifact, and reshape the single-trial EEG data through Independent Component Analysis 

(ICA) decomposition (30).  

3) Data was then normalized using a Zero Component Analysis (ZCA) whitening 

normalization (Figure 4C; Mahanalobis Zero Phase Whitening; (31,32)) to create a 2D 

representation, which maximizes the average cross-covariance between each dimension of the 

whitened image and the EEG data. Further details are provided in the Supplemental Information.  

4) After the whitened normalization procedures, the whitened normalized image   was fed 

into the Deep ConvNet classifier (Figure 4D; See Supplementary Information). The Deep 

ConvNet was composed of three convolutional-pool (conv-pool) blocks. The first conv-pool block 

had a convolutional layer with a rectangular kernel-size of 100x10 units and 32 filters and a 

pooling layer with a size of 5x2 units connected to a local response normalization layer (31,33). 

The second conv-pool block was composed of a convolutional layer with a kernel-size of 20x5 

units and a pooling layer with a size of 2x2 units also connected to a second normalization layer. 

The third conv-pool block was composed of a conv-layer with a size 10x2 and a max-pool layer 
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with a size of 2x2 and 128 filters. Each conv-pool layer has a stride factor of 2 and a non-zero 

padding, thus dividing the output size in half after each conv-pool layer. All the 

normalization/regularization layers used amplitude normalization and not batch normalization per 

block. The third max-pooling layer was attached to a dense, fully-connected (FC) layer with 1024 

units in order to compute the final 4 class probabilities for each emotion (happy, sad, angry, and 

fear) using a Softmax function. A description of the CNN model, the training process, and the 

layer operators can be found in the Supplementary Information. A leave-one-trial-out (LOTO) per 

participant cross-validation was used for all three samples in order for each individual’s data to be 

used to train and then predict their own data. Specifically, 47 of each subject’s 48 trials were used 

to train a CNN and the single, remaining trial was used to test the performance of the trained 

CNN.  This procedure was repeated 47 more times, swapping which trials were used for training 

and which trial was used for testing.  This entire, 48-step cross-validation procedure was then 

repeated for each subject. 

5) In order to examine which portions of the EEG signal are important and distinct in ASD 

for FER (32,34) we used the iNNvestigate package (35), which allows the comparison of multiple 

methods for extracting feature-importance information in the resulting CNN. In order to balance 

numerically the relevance maps across feature-space, we modified the LRP DeepTaylor baseline 

to balance the level of positive, and negative relevance propagated through the CNN (see 

Supplementary Information). This new balanced LRP relevance map is denoted as LRP A/B Flat 

Preset depending on the value of α and β relevance propagation adjustment parameters (35,36). 

Therefore, in order to statistically explore which temporal portions of the EEG signal are most 

relevant to the CNN’s performance, we divided the segments into overlapped time-windows that 

may relate to various stages of facial emotion recognition. Specifically, these windows were 0-

500ms, 250-750ms, 500-1000ms, 750-1250ms, and 1000-1500ms. For more background and 

analyses details please refer to the Supplementary Material.  

 

Data Analyses: In order to determine (a) whether the neural activity of individuals with and 

without ASD can be used to classify emotions, and (b) whether the relation between CNN 
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predictions and behavioral performance are comparable between individuals with ASD and 

controls, we used a one-way ANOVA comparing the accuracies of the CNN and behavioral 

performance on the FER task for the control and ASD groups. Accuracies were calculated by 

determining the percent of correctly classified trails for each of the four emotions, meaning p     

erforming at chance levels would result in a .25 accuracy value. Next, to examine (c) whether 

differences in predictive accuracy are related to differences in behavioral performance on the 

FER task in control and ASD, we examined the associations between CNN accuracy and 

behavioral performance on FER and ADOS-CS within each group using Pearson correlations, 

then used Fisher r-to-z transformations to compare association strengths between groups, and 

used Pearson correlations collapsing across groups to examine performance’s associations 

dimensionally. Lastly, in order to explore what temporal portions of the input are most relevant to 

the CNN’s performance and indicate what aspects of the EEG data permit a successful 

classification we conducted a one-way ANOVA examining group difference in the importance of 

each pre-specified time window of EEG data in the CNN classification accuracy.  

 

Data Availability. Data from the primary study can be found at the National Database for Autism 

Research (NDAR). Code for the CNN can be found here: https://github.com/meiyor/Deep-

Learning-Emotion-Decoding-using-EEG-data-from-Autism-individuals.  Data for replication 

samples can be made available upon request to the corresponding authors or Dr. Matthew D. 

Lerner. 

 

Results 

 

CNN successfully predicts viewed facial emotions. The CNN was able to successfully predict 

the viewed facial emotions on each test trial of the FER task (Figure 1).  Indeed, the CNN was 

more accurate (M = 0.88, SD = 0.17) in predicting the facial emotions than participants 

themselves (M = 0.82, SD = 0.08, F(1, 86) = 21.45, p < .001). More importantly, we observed an 

interaction (F(1, 86) = 7.56, p = .007; Figure 2) such that the CNN achieved greater accuracy in 
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the ASD group (M = 0.932, SD = 0.13) than the control group (M = 0.863, SD = 0.213). This 

pattern of effects was replicated in two additional independent samples (see Supplemental 

Information).  

 

Considering ASD symptoms dimensionally (N = 88; Figure 3), there was no significant relation 

between ADOS-2 CS and CNN classification accuracy (r = .186, p = .083). This was observed, 

despite a significant relationship between ADOS-2 CS and behavioral performance (r = -.306, p = 

.004), such that those with more  severe ASD symptoms exhibited poorer behavioral accuracy. 

Furthermore, the relationship between ADOS-2 CS and behavioral performance was significantly 

stronger than the relationship between ADOS-2 CS and CNN accuracy (z = -3.29, p = .001). This 

effect replicated in the combined sample, including two other independent samples (see 

Supplementary Information) 

 

CNN accuracy is unrelated to behavioral performance. There was no relation between 

behavioral performance and CNN accuracy. This was true for the control group (r = 0.19, p = .20), 

for the ASD group (r = -0.23, p = .16), and for the combined sample (r = 0.02, p = .82).  

Furthermore, these relationships did not differ between groups (z = 1.92, p = .055). These effects 

replicated across two other independent samples (see Supplementary Information).    

 

CNN predictive value is temporally distinct across groups. In order to evaluate the LRP-B 

present saliency map, a group by time window ANOVA was evaluated. Findings revealed that the 

CNN predictive value differed across temporal windows (F(4, 83) = 3.42, p =.012). There was an 

interaction such that groups differed in the CNN’s predictive value across temporal windows of 

the EEG during the FER task (F(4, 83) = 11.61, p < .001; Figure 3).  Indeed, the CNN was more 

predictive during the early window for the control group (0-500ms; Controls: M = -0.06, SD = 0.13, 

ASD: M = -0.12, SD = 0.12; F(1, 86) = 5.56, p = .021), whereas the late time window was more 

predictive for the ASD group (1000-1500ms; Controls: M = -0.18, SD = 0.12, ASD: M = -0.06, SD 
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= 0.15; F(1, 86) = 18.48, p < .001). This pattern of effects is replicated in another independent 

sample (see Supplementary Information).  

 

Discussion  

 

This study is the first to utilize a CNN to identify facial emotions viewed by individuals with and 

without ASD from sparse-array raw EEG signal. These results indicate that (a) facial emotion 

information is encoded in and extractable from the neural signals of individuals with and without 

ASD, that (b) encoding is not detectably suboptimal, but is distinct, in ASD, and related 

impairments likely occur during the deployment of encoded information, and that (c) neural 

processes for encoding and deployment of facial emotion processing are distinct in both ASD and 

controls.  These results are novel in that they show that, even in individuals with ASD who have 

impaired facial emotion recognition (worse behavioral performance), insufficient encoding is not 

related to or responsible for these impairments.  

 

The CNN was able to use neural activity to accurately predict viewed emotional facial 

expressions in both groups, with accuracies (>86%) considerably greater than chance (25%). 

These results suggest that information required for predicting observed facial emotions is present 

within the neural signal in individuals with and without ASD. The success of the CNN is 

particularly impressive given that the CNN had an extraordinarily challenging task in that it was 

required to predict the emotional facial expression based on a single trial’s-worth of sparse-array, 

intercorrelated EEG data – yet was still able to achieve very high accuracy.  

 

Classification accuracy of the CNN was better in the ASD group, despite worse behavioral 

performance (3–5). Furthermore, CNN accuracy was not associated with ADOS-2 CS.  These 

results suggest that emotional facial information is encoded in the neural activity of individuals 

with ASD regardless of the severity of ASD symptomatology.  However, these findings alone 

need not suggest that neural encoding processes are the same for individuals across the ASD 
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spectrum – that is, such encoding of emotion as instantiated in the CNN may be achieving the 

same classification accuracy but interpreted differently by the CNN itself. However, successful 

translation of encoded facial emotion information into behavior is impaired in ASD, as indicated 

by the frequently observed impairments in FER associated with ASD. This is further substantiated 

by our results showing that the CNN performance was unrelated to behavior in both groups, 

which suggests partially distinct neural mechanisms involved in the encoding and deployment of 

facial emotions.  

 

In order to elucidate what aspects of the neural signal encode facial emotion information, we 

explored which portions of the neural signal were most relevant to the CNN’s performance, and if 

this varied by group using reliable saliency methods such as LRP. In fact, the early temporal 

window (250-500ms) was most important to successful CNN classification for the control group, 

whereas the later temporal window (1000-1500ms) was most important for the ASD group, 

suggesting key differences in the unfolding of neural processing of facial emotions between 

groups. These differences might reflect delayed latency of neural signal encoding of FER in ASD 

(37,38), though this seems unlikely given equivalent reaction times in the different groups. 

Alternatively, these differences could reflect compensatory mechanisms for FER (1,7,39) or 

suggest a greater reliance on later stages of facial emotion processing to better capture crucial 

nuances essential for encoding in ASD (40). As such, examination of these temporal windows 

represents a viable starting point for investigating portions of the neural signal that may lead to 

downstream differences in behavioral task performance. Notably, they provide ASD and cognitive 

neuroscience researchers new avenues to explore in attempting to understand how neural 

signals may encode facial emotions and subsequently be deployed to accurately perform FER 

tasks.  

 

In addition to contributing to theoretical models of FER in ASD, these findings also have important 

implications for the development and implementation of intervention programs. Specifically, they 

suggest that intervention development should exploit the intact facial emotion information 
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encoding in ASD and aim to promote translation of this encoding into behavior. Currently, some 

interventions promote the use of FER prostheses (41), while others encourage individuals with 

ASD to adjust their attention when viewing faces (42), or integrate facial information (43) to more 

closely approximate that of their typically developing peers. Results of the CNN analyses suggest 

that such approaches – which either aim to compensate for poor encoding of facial emotions or to 

teach those with ASD to recognize emotions as typically developing peers do - may fail to 

capitalize on the most parsimonious existing route to facial emotion identification in ASD. That is, 

it may be more beneficial to build interventions that reinforce intact (but ASD-specific) neural 

facial emotion encoding and more closely target potential impairment in the deployment of 

accurately encoded facial emotion information (44).  

 

Though promising, some limitations that can inform future studies bear note. The sample included 

only verbally-able individuals with ASD and the third replication sample did not have a control 

group. Additionally, all individuals performed fairly well on the task, limiting the variance with 

which we could examine the neural signals that may predict behavioral mistakes. Nevertheless, 

this work serves as an important step in evaluating the utility of applying CNN to better 

understand how typically developing individuals and individuals with ASD encode facial emotion 

information at the neural level. Future work should expand the current findings by examining 

emotion-specific effects (45–47), effects of correct versus incorrect trials, the effects of passive 

versus active viewing tasks, and the effects of facial emotion viewing duration (48–50) using 

different input representations, or more robust saliency methods. Studies should work to 

disentangle what aspects of the neural signal are being used to predict emotional faces, such as 

low-level visual information (but see Supplemental Information). Moreover, studies should 

examine developmental effects of encoding, particularly in childhood when face processing is 

maturing. Additional manipulations such as masking or occluding stimulus images during 

temporal windows of interest (e.g., 25-500ms and 1000-1100ms) may be particularly useful in 

leveraging both careful experimental design and innovative computational methods to elucidate 

portions of the neural stream that are essential for accurate processing of facial emotion 
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identification (51). In addition to future studies examining encoding, further work should be done 

to disentangle whether behavioral mistakes are made as a result of improper decoding or 

deployment of the encoded neural signal. Moreover, examining mistakes as on a continuous 

spectrum, rather than diagnostically could yield interesting results. Lastly, future studies could 

compare learning rates of facial emotion classification after receiving explicit feedback, rather 

than implicit feedback in this study, in individuals with ASD compared to the CNN to see if they 

learn in a similar manner. 

 

Overall, these findings suggest that individuals with ASD indeed reliably encode facial emotional 

information in the neural signal, and that CNN can be used to accurately classify observed 

emotions from this signal.  Therefore, individual performance deficits in FER associated with ASD 

are likely not accounted for by the absence of detectable neural encoding of facial emotion 

information, but rather, likely stem from aberrations later in the processing stream such as usage 

or deployment of facial emotion information. Findings reported here suggest that future studies 

should focus on identifying where and when the breakdown in translation from neural encoding to 

behavioral response may lie, which will be critical to further inform intervention development 

(Mayor-Torres et. al 2020 under review).  
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Table 1. Descriptive statistics for the participants. Demographics, ADOS-CSS, and FSIQ for all 
the participants in the main participant sample included in this study. 

   Control   ASD 

 (N = 48) (N = 40) 

Age (M, SD)  16.73* 3.41 14.89* 2.35 

Male (N, %) 29* 60.42 32* 80.00 

ADOS-2 CS (M, SD)  3.33* 2.71 8.15* 2.05 

FSIQ (M, SD) 107.82 14.03 100.78 16.54 

FER Accuracy (%; M, SD) 0.82* 0.08 0.78* 0.09 

FER Reaction Times (ms; 

M, SD) 4081.46 957.16 3822.60 903.53 

Note.  Age = chronological age measured in years; ADOS-2 CS = Autism Diagnostic Observation Schedule- Second Edition Comparison Score; FSIQ 

= Full Scale Intelligence Quotient; FER = Facial Emotion Recognition behavioral performance accuracy. *p<.05 for group differences. 

  



 

22 

 

Figure Information: 

Figure 1. The pipeline used for emotion decoding in this study including (A) EEG data 
processing, (B) automatic channel and artifact removal using the Prep pipeline ASR EEGlab 
plugin and the ADJUST artifact removal plugin, (C) the ZCA whitening 
normalization/transformation process to increase the emotion class separability, and (D) the 
Convolutional Neural Networks (CNN) composed of 3 conv-pool blocks going from high to low in 
terms for conv-pool dimensionality, and low to high in terms of the number of filters. Two 

normalization /regularization layers were added, and a fully-connected (FC) layer with 1024 units 

with a final softmax layer was used to process the final class probabilities. 

 

 

Figure 2. Spaghetti plots depicting the within-subject relationship between FER accuracies (in 
blue) and CNN accuracies (in red) for individuals in the control and ASD groups. Larger values on 
the y-axis indicate greater accuracies. ***p<.001.  
 
 
 

Figure 3. Visual representation of the observed interaction between group (control, ASD) and 
accuracy type (behavioral, CNN) indicating greater CNN accuracy for the ASD group. Larger 
values on the y-axis indicate greater group mean accuracies. ** p<.01.  
 
 

Figure 4. Relevance-maps created using the LRP B flat-rule preset saliency map (32). These 
maps depict the temporal windows of EEG signal most predictive of CNN classification accuracy, 
averaged across the four emotion classes: happy, sad, angry, and fearful, for the (A) control 
group, (B) ASD group, and (C) difference between control and ASD groups. The x-axis displays 
time in milliseconds from the onset of the stimulus and the y-axis shows the channels indexes on 
the scalp. Additionally, each relevance map shown here, we have included the 5 relevance 
topomaps associated with the time-windows utilized in this study: 0-500ms, 250-750ms, 500-
1000ms, 750-1250ms, and 1000-1500ms. In (A) and (B), darker-red colors indicate higher 
relevance values while darker-blue colors indicate lower relevance values. In (C), red indicates a 
higher relevance value for the control group and blue indicates a higher relevance value for the 
ASD group. (A) and (B) relevance maps were normalized between [-1,1] plotted with the jet 
colormap, while (C) was normalized between [-0.1,0.1] and plotted with a redblue colormap.  
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